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SUMMARY

A simple method is proposed for treating curved or irregular boundaries in Cartesian grid shallow flow
models. It directly evaluates fictional values in ‘ghost’ cells adjacent to boundary cells and requires
no interpolation or generation of cut cells. The boundary treatment is implemented in a dynamically
adaptive quadtree grid-based solver of the hyperbolic shallow water equations and validated against
several test cases with analytical or alternative numerical solutions. The method is easy to code, accurate,
and demonstrably effective in dealing with irregular computational domains in shallow flow simulations.
Results are presented for still water in a basin of complicated geometry, steady hydraulic jump in an open
channel with a converging sidewall, wind-induced circulation in a circular shallow lake, and shock wave
diffraction in a channel containing a contraction and expansion. Copyright q 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Accuracy, efficiency, and boundary fitness are three of the most important prerequisites of a
successful numerical model. This paper focuses on boundary fitness in the context of shallow flow
simulation, where the natural domain geometry can be very complicated. Shallow free surface
flows occur wherever the flow is predominantly horizontal and gravity waves are long with
respect to the depth, such as in channels, rivers, floodplains, lakes, lagoons, estuaries, and coastal
waters.

Much attention has been given to devising methods for overcoming the problem of fitting
computational grids to domains with curved or irregular boundaries. Automatic boundary fitting
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is usually achieved using one of three grid generation methods: structured curvilinear grids
(see e.g. [1–3]); unstructured triangular grids (see e.g. [4–6]); and Cartesian grids with local treat-
ment of near-boundary cells (see e.g. [7, 8]). The curvilinear systems approach involves mapping
the physical flow geometry onto a computational grid composed of rectangular blocks. The trans-
formed governing equations are more complicated in curvilinear coordinates, and this complexity
can influence the stability and convergence properties of the solver [9]. Furthermore, the quality of
the curvilinear grid obviously depends on the shape of the boundary, and hence it is awkward to
apply the method to problems with highly irregular boundaries. The second approach is to utilize an
unstructured mesh, mostly created by means of a moving front or Voronoi scheme (see e.g. [10]).
Such meshes are widely utilized with finite volume or finite element methods, and can conform
to nearly any desired geometry (see e.g. [6]). Although unstructured meshes are straightforward
to coarsen and refine, remeshing can carry a large computational overhead with regard to node
neighbour identification and measures to ensure local cell quality. A third approach is to implement
special boundary-fitting techniques directly on a Cartesian-type grid. Examples include irregular
stars for finite differences (see e.g. [11]), the Cartesian cut cell method [7, 12, 13], and immersed
boundary methods (e.g. [8, 9]). In the Cartesian cut cell method, all cell faces are aligned parallel
to local Cartesian coordinate axes and the governing equations are solved directly in Cartesian
coordinates.

In this paper, we propose a simple, yet effective method for boundary fitting in the context of a
dynamically adaptive quadtree grid-based shallow water equation solver. The proposed boundary
treatment method calculates flow variables in ghost cells directly from the neighbouring cell under
consideration, and thus it is very simple and easy to implement. Despite its simplicity, it will be
demonstrated that the method is effective and accurate. Another important feature is that the method
has no effect on computational efficiency. The structure of the paper is as follows. Section 2 briefly
presents a Godunov-type finite volume solver of the hyperbolic matrix form of the shallow water
equations, with mathematically balanced flux gradient and source terms. The solver is designed
to model steep-fronted shallow flows over non-uniform terrain. Section 3 describes the boundary
approximation used to fit Cartesian grids to complicated boundaries. Section 4 discusses results
from four validation tests: still water in a basin of complicated bed topography and irregular side
walls, the development of an oblique hydraulic jump at a converging wall junction, wind-induced
circulation patterns in a circular lake of varying bathymetry, and shock-like bore propagation
in a channel containing a contraction followed by an expansion. Section 5 outlines the main
conclusions.

2. QUADTREE GODUNOV-TYPE SHALLOW FLOW MODEL

Using Green’s theorem, a matrix-hyperbolic conservation form of the shallow water equations is

�
�t

∫
�
ud�+

∮
S
FdS=

∫
�
sd� (1)

where t is time, u is the vector of conserved variables, and F is the vector of fluxes passing through
the lateral boundary (S) of the problem domain (�) defined by

F= fnx +gny (2)
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where f and g are the flux component vectors, nx and ny are Cartesian components, and s is the
vector of source terms. In full, the constituent vectors are

u=
⎡
⎢⎣

�

uh

vh

⎤
⎥⎦ , f=

⎡
⎢⎢⎣

uh

u2h+g(�2−2�zb)/2−�h �u/�x

uvh−�h �v/�x

⎤
⎥⎥⎦

g=

⎡
⎢⎢⎣

vh

uvh−�h �u/�y

v2h+g(�2−2�zb)/2−�h �v/�y

⎤
⎥⎥⎦ and s=

⎡
⎢⎣

0

(�wx −�bx )/�−g�Sox +h f v

(�wy−�by)/�−g�Soy−h f u

⎤
⎥⎦

where � is the water surface elevation and zb is the bed elevation above datum, such that the
total water depth is h=�−zb; u and v are the depth-averaged Cartesian velocity components;
� is the depth-averaged kinematic eddy viscosity coefficient; �wx and �wy are the surface (wind)
stress components; �bx and �by are the bed friction stresses; f is the Coriolis parameter; g is
the acceleration due to gravity; � is the water density; and Sox (=�zb/�x) and Soy (=�zb/�y)
are the bed gradients in the horizontal Cartesian directions. Liang and Borthwick [14] provide
a full derivation of the above shallow water equations. The flux gradient and source terms are
mathematically balanced and so there is no need for additional numerical treatment for spatially
non-uniform bed topography. The flux vector can also be expressed in terms of inviscid and viscous
fluxes as

F=FI−�FV (3)

where FI and FV are inviscid and viscous flux vectors given by

FI= fInx +gIny =

⎡
⎢⎢⎣

(uh)nx +(vh)ny

(u2h+g(�2−2�zb)/2)nx +(uvh)ny

(uvh)nx +(v2h+g(�2−2�zb)/2)ny

⎤
⎥⎥⎦ (4)

and

FV= fVnx +gVny =

⎡
⎢⎢⎣

0

(h �u/�x)nx +(h �u/�y)ny

(h �v/�x)nx +(h �v/�y)ny

⎤
⎥⎥⎦ (5)

The conservation law formed by the shallow water equations (1) is solved using a Godunov-type
finite volume scheme based on adaptive quadtree grids. Second-order accuracy in both time and
space is achieved by employing the MUSCL-Hancock method [15], where MUSCL stands for
Monotone Upwind Schemes for Conservation Laws. In an explicit scheme, the MUSCL-Hancock
method updates flow variables over a time interval via predictor and corrector steps.
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From (1), the time-marching formula for updating the cell-centred flow variables over the
predictor step is

un+1/2
i =uni − �t

2

[
(Fi,E−Fi,W)

�x
+ (Fi,N−Fi,S)

�y
−si

]
(6)

where subscript i is the cell index; superscript n denotes the time level; �t is the time step; Fi,E,
Fi,W, Fi,N and Fi,S are the flux terms evaluated at the east, west, north and south cell interfaces;
and �x and �y are the cell sizes in the x- and y-directions. During this half time step, the bed slope
terms are approximated by central differences. Interface fluxes are determined at the midpoint of
each cell face by linear interpolation, such that

u(x, y)=ui +r∇ui (7)

where r is the distance vector from the cell centre to the point of interest (x, y); and ∇ui is the
gradient vector. A slope limiter is used to prevent numerical oscillations in regions of high gradient.
The interpolation formula for face values in the x-direction for cell i then becomes

ui,W=ui − 1
2W(r)(ui −uw) and ui,E=ui + 1

2W(r)(ui −uw) (8)

in which W(r) is the slope limiter, ui,W and ui,E are the west and east face flow variable vectors of
cell i ; and uw is the flow variable vector at the centre of the west neighbour of cell i . A minmod
slope limiter is chosen because it gives more stable solutions:

�(r)=max[0,min(r,1)] (9)

where r is the ratio of successive gradients [13]. The y-direction face values for cell i can be
derived in a similar way. Velocity gradients in the viscous interface fluxes defined by (3) and (5)
are approximated using central differences.

In the corrector step, the flow variables are calculated over a full time step, based on flow data
from the predictor step. The explicit updating formula is

un+1
i =uni −�t

[
(Fn+1/2

i,E −Fn+1/2
i,W )

�x
+ (Fn+1/2

i,N −Fn+1/2
i,S )

�y
−sn+1/2

i

]
(10)

Inviscid fluxes are calculated using the Harten, Lax, van Leer Contact (HLLC) approximate
Riemann solver proposed by Toro et al. [16], where the face values of the flow variables are again
obtained using slope-limited interpolation formulae. In the x-direction,

un+1/2
i,W =un+1/2

i − 1
2W(r)(ui −uw), un+1/2

i,E =un+1/2
i + 1

2W(r)(ui −uw) (11)

In evaluating W(r)(ui −uw) in the corrector step, Hu et al. [17] find that more accurate results are
obtained by using flow information at time level n than at time level n+ 1

2 . The y-direction face
values are calculated in a similar manner. Details of the HLLC approximate Riemann solver are
given by Harten et al. [18], Fraccarollo and Toro [19], and Liang et al. [20]. Viscous fluxes are
calculated by central differencing the velocity components obtained from the predictor step.

On the quadtree grid, the flux calculations are carried out on a locally uniform grid template.
Natural neighbour interpolation formulae are used to obtain values for flow variables at appropriate
locations so as not to violate the conservation laws [20].
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At open boundaries, gradients of surface water level, normal and tangential velocity components
are set to zero. Inflow and outflow conditions are imposed using Riemann invariants set according
to the local Froude number (evaluated at the boundary fluid cell under consideration). At solid
walls, the normal velocity component and the gradients of the tangential velocity component and
surface water level are set to zero.

The scheme is explicit, where its stability property is determined by the Courant–Friedrichs–
Lewy (CFL) criterion. Here, the Courant number is set to 0.8.

3. BOUNDARY TREATMENT

In Cartesian grids, staircase approximations are often used for curved or irregular boundaries.
Typically, when a solid body is placed in the fluid domain, the background grid is cut by the
boundary curve. Fluid cells included in the flow calculation are those cells whose centroid lies
within the fluid. Other cells, whose centroid lies within the solid body, are known as solid cells
and excluded from the flow calculation. Boundary cells are fluid cells with at least one neighbour
sharing a common interface that is a solid cell. Figure 1 shows three configurations commonly
encountered when a solid boundary curve cuts a grid cell. In the present work, a similar boundary
treatment is applied to each configuration. Consider Case (b) in Figure 1, with the cell notation
given in more detail in Figure 2. If the boundary curve happens to be aligned with the common
interface of the two cells Cand G, the slip boundary conditions are simply,

�G =�C , uG =−uC and vG =vC (12)

For curved or irregular boundaries, however, the above treatment introduces spurious viscosity,
local separation, and spikes in the free surface, to the numerical solutions due to the staircase
approximation. For example, Rogers et al. [21] discuss near-boundary inaccuracies caused by the
staircase grid for the oblique hydraulic jump.

We propose a simple, yet effective method to resolve the problem. For the grid configuration in
Figure 2, the fluxes through the mid-point O ′ of the western cell interface of the boundary fluid
cell C have to be evaluated in a finite volume scheme. Point O , which is the nearest boundary
point to O ′, is first sought. The tangent T at point O is at an angle � anticlockwise from the x-axis.
For a slip boundary, the normal velocity component and the gradient of the tangential velocity
component are zero at O , and hence

uN|O =0 and
�uT
�N

∣∣∣∣
O

=0 (13)

where the subscripts N and T denote the normal and tangential directions, respectively. Now
assume that the boundary point O is moved to O ′, which has the same tangential and normal

(a) (b) (c)

Figure 1. Three different types of boundary configurations.
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Figure 2. Simple method to treat a curved boundary on Cartesian grids.

directions as O . Hence, the slip boundary conditions at O ′ can be written as

uN|O ′ =0 and
�uT
�N

∣∣∣∣
O ′

=0 (14)

Decomposing the velocities at cells G and C into normal (N) and tangential (T) components, the
slip boundary conditions at point O ′ suggest that

N direction: −uC sin�+vC cos�=−(−uG sin�+vG cos�)

T direction: uC cos�+vC sin�=uG cos�+vG sin�
(15)

Therefore, the slip boundary conditions at point O ′ are given by

�G =�C , uG =uC −2(uC sin�−vC cos�)sin�

vG =vC +2(uC sin�−vC cos�)cos�
(16)

To implement the method, � has to be estimated. For certain simple boundary geometries, such as
the arc of a circle, � can be determined analytically. In general, however, the following numerical
method is used to evaluate �. First, the nearest boundary point (O) to the mid-point (O ′) of the
cell interface under consideration is identified. In the present work, the boundary curve is defined
by the set of seeding points used in the generation of the background quadtree grid. After the
nearest seeding point (denoted by the index i) to the mid-point O ′ has been located, the local
tangent is approximated by the line connecting the two neighbouring seeding points. The value of
� is therefore estimated from

�= tan−1 ys(i+1)− ys(i−1)

xs(i+1)−xs(i−1)
(17)

where xs and ys are the coordinates of the seeding points. Obviously, the use of more finely resolved
seeding points improves both the accuracy of the boundary representation and that of �. Values
of � are calculated immediately after generating the quadtree grid and stored for use throughout
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the simulation. During grid generation, the boundary cells are generated at the finest subdivision
level in order to obtain an accurate representation of the solid boundary geometry. The boundary
cells are fixed during grid adaptation, and hence the values of � remain constant during the entire
simulation. Hence, the method is computationally efficient when implemented on a dynamically
adaptive quadtree grid and can be used directly on a general Cartesian solver.

A key step in the above curved boundary treatment is the shift of the actual boundary point to
the mid-point of the cell interface under consideration, which could lead to local inaccuracy near
boundaries. However, the validation results in Section 4 demonstrate that the errors introduced by
the shifts are small and do not affect the overall accuracy of the global solution. This is especially
the case for a quadtree grid, where cells of the finest resolution approximate solid boundaries. The
present simple boundary method can be also extended to more complicated boundary conditions.
For example the log-style boundary condition presented in Zedler and Street [22] can be utilized
by replacing the equations for the normal gradient of tangential velocity component given by (13)
and (14) with that for a log-law Neumann boundary condition. However, the merit of the current
method vanishes when dealing with no-slip boundary conditions as solutions to Equation (14) give
the same values as those from a staircase approximation.

4. RESULTS

In all cases, �=1000kg/m3, g=9.81m/s2, and the Coriolis effect is ignored. When dynamic grid
adaptation is used, the criteria for grid enrichment and coarsening are based on the r.m.s. free
surface gradient,

�=
√(

��

�x

)2

+
(

��

�y

)2

(18)

A cell is subdivided into four sub-cells, whenever � is greater than a prescribed upper threshold
value and the subdivision level of the cell is less than the set maximum. When the values of �
of the four children of a parent cell are all smaller than a prescribed lower threshold limit and the
subdivision level of the child cells is greater than the set minimum, the grid is locally coarsened
by removing the four child cells. At present, the adaptation criteria based on the values of � are
determined by trial and error. However, a more general method is worth future investigation.

4.1. Still water in a basin of complicated geometry

We first consider still water at steady state in a basin of complicated geometry in order to
examine the ability of the balanced shallow water solver to handle those source terms related to
spatially varying bed slopes. The test was suggested by Goutal and Maurel [23] at a Workshop on
Dam-break Wave Simulation and relates to a 1500m long channel whose geometry is described
by Table I and Figure 3. The boundaries are all slip, with the irregular shape of the lateral walls
modelled using the method outlined in Section 3. The initial conditions are that the discharge
is zero everywhere and the free surface is horizontal, with its level 12m above the z=0 datum
indicated in Figure 3(b). The water is therefore at rest everywhere in the channel, and without any
external momentum input, the flow should remain motionless. However, the test is a stern one of
a Godunov-type solver, because the bed slopes are variable, and without damping present from
viscous effects or bed friction, a numerical scheme that does not exactly balance the contributions
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Table I. Still water test: description of the channel geometry.

X (m) zb (m) Width (m)

0 0 40
50 0 40
100 2.5 30
150 5 30
200 5 20
250 5 30
300 3 30
350 5 25
400 5 25
425 7.5 30
435 8 35
450 9 35
470 9 40
475 9 40
500 9.1 40
505 9 45
530 9 50
550 6 50
565 5.5 45
575 5.5 40
600 5 40
650 4 30
700 3 40
750 3 40
800 2.3 5
820 2 40
900 1.2 35
950 0.4 25

1000 0 40
1500 0 40

from source and flux gradient terms would generate spurious fluxes and become unstable (see
e.g. [24]). Simulations on uniform and non-uniform quadtree grids of different subdivision levels
from 4 to 7 were undertaken until t=200s. The water invariably remained stationary, confirming
that the numerical scheme correctly handles flux gradient and bed source terms when the domain
has irregular topography. Figure 4 shows the results obtained on a quadtree grid with highest and
lowest subdivision levels of 7 and 4, with the finest mesh produced in areas near the domain
boundaries.

4.2. Oblique hydraulic jump

The second case concerns the steady hydraulic jump that develops in an open channel, when
supercritical inviscid flow is deflected by an inclined wall. The flow domain is 40m×30m in plan
with a frictionless and horizontal bed. The upstream supercritical flow is directed from left to right
and has a uniform depth of 1m and velocity of 8.57m/s corresponding to a Froude number of
about 2.74. At a distance of 10m from the inflow boundary, the southern channel wall inclines
inwards at an angle of 8.95◦ to the x-direction, causing a hydraulic jump to occur. This problem
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Figure 3. Still water test: channel geometry; (a) plan view and (b) side elevation.
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Figure 4. Still water test: free surface elevation along the channel at t=200s.

has an analytical solution, whereby the jump is oriented across the domain at an angle of 30◦ to
the x-direction, and the water depth increases abruptly from 1 to 1.5m across the jump.

In the numerical model, slip conditions are imposed at the north and south walls. At the western
inflow boundary, the velocity is fixed at u=8.57m/s. At the eastern outflow boundary transmissive
conditions are applied (see e.g. [25]). Bed friction and viscosity have zero values. An initial
quadtree grid of 1357 leaf cells is generated about boundary seeding points, with highest and lowest
subdivision levels of 7 and 4. The finest cells at level 7 have a side dimension equal to 0.3125m,
which is 1

128 of the unit square side dimension (40 m). In this case, dynamic grid adaptation is
based on free surface criteria with thresholds of �=0.1 and 0.08 used for grid enrichment and
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Figure 5. Oblique hydraulic jump: temporal convergence history.

coarsening, respectively. A converged solution is assumed to have been reached when the relative
error,

R=
√√√√∑

i

(
hni −hn−1

i

hni

)2

(19)

is less than 1.0×10−10. Figure 5 plots R against time, indicating the temporal convergence history,
where steady state is estimated to be achieved by 27 s (R<1.0×10−10).

Figure 6 shows the predicted steady-state surface water level contours, 3D water surface, and
adapted quadtree grid that consists of 2356 cells. The oblique jump is sharply captured, with its
position and height in excellent agreement with the analytical solution. In Figure 6(a) the dashed
line indicates the analytical location of the jump. Near the inclined boundary wall, the contour
lines and 3D surface are properly defined in keeping with the flow physics, again confirming
the effectiveness of the simple boundary treatment proposed in Section 3. Figure 7 illustrates the
predicted velocity field in the entire domain and in the region near the inclined boundary. The flow
upstream and downstream of the jump is directed parallel to the lateral boundary.

The effect on accuracy of the boundary treatment is ascertained using the L1 norm of the error,
e, defined as

e=
∑

i |hi − h̃i |∑
i h̃i

(20)

where hi and h̃i are the predicted and analytical water depths at cell i . L1 errors are computed
on uniform quadtree grids of subdivision levels 4–8 for all the grid cells and also for a subset of
boundary cells near the inclined wall. Figure 8 gives a plot of ln(e) against ln(dx). The cell size
is dx= xl/2lev where xl=40m is the length of the domain and lev is the grid subdivision level.
Both series of L1 errors lie on straight lines of slope slightly greater than 1, indicating that the
order of accuracy of the scheme is about 1 both globally and locally near the boundary. This is
to be expected because the otherwise second-order accurate solution is smeared by the shock-like
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Figure 6. Oblique hydraulic jump: predicted results on adaptive quadtree grid; (a) surface water level
contours, (b) 3D water surface and (c) adapted quadtree grid.
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Figure 7. Oblique hydraulic jump: velocity vectors; (a) entire domain and (b) near the inclined wall.

flow discontinuity at the hydraulic jump. Similarly, the smoothing effect on the flow of the present
simple boundary treatment again contributes to the numerical solution being first-order accurate. In
general applications, the present boundary treatment should maintain global second-order accuracy,
in accordance with the findings of Tseng and Ferziger [8].
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Figure 9 shows the results obtained using the same adaptive quadtree grid but without boundary
treatment. The inclined boundary is instead approximated as a Cartesian staircase. From the surface
water level contours in Figure 9(a), it is obvious that flow spikes appear near the inclined solid
boundary. The location of the jump is also wrongly predicted. From the close-up view of the
velocity vectors near the inclined wall in Figure 9(c), numerical dissipation arises in the near wall
region where the velocity vectors are smaller and not aligned with the boundary. Rogers et al.
[21] also present similar findings. Taken overall, this provides further evidence that the simple
boundary treatment suggested in Section 3 is a very useful adjunct to the Cartesian grid-based
shallow flow models.

4.3. Wind-induced circulation in a circular shallow lake

Kranenburg [26] has derived an analytical approximation to wind-induced flow in a circular lake
with axially symmetric bed topography by simplifying the momentum equations and fitting a stream
function solution representing the steady-state flow pattern. The bed elevation of Kranenburg’s
lake is given by

zb=
(
1

2

)1/2

H

(
1−

(
1− r

R0

)1/2
)

(21)

where r is the distance from the basin centre, H =0.5m is a weighted averaged water depth, and
R0=120m is the radius of the lake. Figure 10(a) illustrates the basin bathymetry at a cross-section
passing through the centre of the lake. The water is initially quiescent, and has surface elevation,

�=H

(
1
2 +

√
1
2

)
(22)

A uniformly distributed wind shear of constant magnitude �w=0.002N/m2 is then applied. Bed
stresses are estimated from

�bx =�C f u
√
u2+v2 and �by =�C f v

√
u2+v2 (23)
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Figure 9. Oblique hydraulic jump: results with staircase boundary treatment; (a) surface water level
contours, (b) 3D water surface, and (c) velocity vectors near inclined wall.

The bed friction coefficient is determined as

C f =
[

�

1+ ln(z0/h)

]2
(24)

in which �=0.4 is the von Kármán constant, and z0=2.8mm is the roughness height. The depth-
averaged eddy viscosity coefficient is

�= 1
6�u∗h (25)

where u∗ =√
�w/� is the friction velocity at the free surface. Slip boundary conditions are imposed

at the solid wall at the lake perimeter, in accordance with Kranenburg’s model. Then under these
conditions, the shallow water equations are solved with the circular basin discretized on the quadtree
grid shown in Figure 10(b). The quadtree grid has subdivision levels between 6 and 8 inclusive,
and 2796 cells. A fixed grid is used because the flow remains smoothly varying as it approaches
steady state, which is assumed to occur at t=6h.

Figure 11(a) presents the steady-state flow pattern due to wind blowing from the north-west.
A symmetric pair of recirculating gyres occupies the land, with the flow opposing the wind as it
crosses the deep water in the middle of the lake. The pair of gyres may be explained using the
vorticity equation (see [27, 28]). It should be noted that the direction of rotation of the gyres is
consistent with the shallow water equations, but would be opposite if the full three-dimensional
Reynolds-averaged Navier–Stokes equations were to be solved. The fastest velocities occur in the
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Figure 10. Wind-induced flow in a circular lake: geometry and quadtree grid;
(a) cross-section and (b) top view.
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Figure 11. Wind-induced flow in a circular lake: steady-state results; (a) streamlines and
(b) normalized velocity profile.

shallowest zone near the perimeter wall, away from the stagnation points that are located at the ends
of the dividing streamline. The centres of rotation of the predicted gyres are slightly downwind of the
northeast–southwest axis of the lake, in agreement with Rogers et al. [21]. The numerical prediction
and analytical approximation [26] of the normalized depth-averaged velocity profile �U/(u∗ ln Z)

across the lake along an axis normal to the wind direction are in agreement (Figure 11(b)).
Note that U =u∗(h/H−1) ln(Z)/� for the analytical approximation and U =(u+v)/

√
2 for the

numerical prediction, with Z =H/z0. The results provide further validation of the present numerical
model with respect to the bed slope, bed friction, surface stress, and viscous flux terms in the
shallow water equations. The simple boundary method is also further justified as no distortion of
streamlines is found near the lake perimeter wall.

In order to assess further the accuracy associated with the simple boundary treatment method,
this test case has been simulated on uniform quadtree grids of subdivision levels of 6–9 and the
global L1 error is estimated, based on the reference solution on a level 9 grid. Figure 12 plots the
L1 error obtained for the different quadtree grids. On the level 6 coarse grid, the numerical results
predict an L1 error that is smaller than expected and the solution fails to converge. However, on a
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Figure 13. Shock diffraction in a contraction–expansion channel: channel geometry.

sufficiently fine grid (at least level 7), the accuracy of the numerical scheme converges to second
order. This confirms that the present simple boundary treatment method translates into a globally
second-order accurate scheme, despite its simplicity.

4.4. Shock diffraction in a contraction–expansion channel

Figure 13 depicts the side walls of a flat, frictionless, and rectangular open channel considered by
Causon et al. [12] in the context of a Cartesian cut cell-based shallow flow model. The channel is
symmetric about y=0, with its upper wall defined by

y=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.0 0�x�1

−0.375cos(�(x−2))+0.625 1< x�2

−0.625cos
(�

2
(x−2)

)
+0.875 2< x�4

1.5 4< x�6

(26)
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Figure 14. Shock diffraction in a contraction–expansion channel: surface water level contours and adapted
quadtree grids at different times.

The channel contracts smoothly from an upstream straight section of width 2m to a throat section
of width 0.5m, after which it expands smoothly to a downstream straight section of width 3m.
A shock-like bore is introduced at the entrance to the curved constriction, with initial conditions
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Figure 14. Continued.

determined from [12]
hL= lhR

uL=c+(uR−c)/ l

vL=vR

(27)
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where c is the speed of the shock wave, subscripts L and R represent the left and right sides of
the shock wave, and

l= 1
2

(√
1+8(FrR−FrS)2−1

)
(28)

in which FrR=uR/
√
ghR is the Froude number of the flow before the shock wave arrives, FrS=3

is the prescribed Froude number of the shock and c=FrS
√
ghR. On the right-hand side of the

shock, the water is initially at rest with a depth of 1m.
Slip boundary conditions are imposed at the channel walls. The left and right ends of the

channel are transmissive. An initial quadtree grid with highest and lowest subdivision levels of 9
and 6, respectively, is generated with the finest mesh near the boundaries and in the vicinity of
the initial shock. For grid adaptation, the upper and lower limits of � are prescribed to be 1.4
and 1.2. Figure 14 presents the surface water level contours and corresponding adapted quadtree
grid at times t=0.067,0.11,0.125,0.15,0.19,0.31,0.36, and 0.4 s. The contours illustrate the
complex wave patterns that develop due to bore diffraction and repeated reflections at the channel
walls as the incident shock-like wave propagates along the channel. The evolution of the adaptive
quadtree grid is consistent with the developing wave patterns. The numerical predictions shown in
Figure 14 are very similar to the sequences of depth contours obtained by Yang and Hsu [29] and
Causon et al. [12].

5. CONCLUSIONS

This paper presents a simple method for representing curved or irregular boundaries in Cartesian
grid numerical models. Fictional boundary values are calculated from the flow variables in each
boundary cell of interest. There is no requirement for complicated interpolation or specific genera-
tion of cut cells, and hence the method hardly increases the computational overhead of an existing
model. This boundary method is a major improvement on staircase-type boundary approximations,
which introduce large near-boundary errors.

The boundary treatment is applied to Cartesian quadtree grids on which the hyperbolic shallow
water equations are solved using a Godunov-type HLLC solver with MUSCL-Hancock time
integration. The governing equations are presented in a form that naturally balances the flux gradient
and source terms, for steep-fronted flow over non-uniform terrain. Validation is undertaken for still
water in a basin of complicated geometry, oblique hydraulic jump in a channel with a convergent
side wall, the steady-state wind-induced flow pattern in a circular lake of concentrically varying
bathymetry, and the diffraction and repeated reflection of a bore wave in a rectangular channel
with a contraction and expansion. In all cases, the results are in agreement with other theoretical
solutions, and confirm that the model properly represents curved and irregular boundaries, while
also correctly balancing flux gradient and source terms in the hyperbolic governing equations.
Numerical experiments indicate that the boundary treatment is locally first-order accurate for an
oblique hydraulic jump. It is reasonable to expect that the method should achieve near second-order
global accuracy, when applied to practical shallow flow simulations. By combining the boundary
treatment with a dynamically adaptive quadtree grid, it is feasible to obtain accurate predictions
of complicated shallow flows, such as large-scale flood inundation, at reasonable computational
cost. This simple boundary treatment can be directly implemented in a general Cartesian model.
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By modifying the model to include the Coriolis force, etc., the method should also be useful for
simulating circulation patterns in estuaries and bays where the coastline is naturally complicated.
It would be interesting to compare the results of such simulations with those of Csanady [27] and
Sankaranarayanan [28], for example.
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